21 research outputs found

    Decremental All-Pairs ALL Shortest Paths and Betweenness Centrality

    Full text link
    We consider the all pairs all shortest paths (APASP) problem, which maintains the shortest path dag rooted at every vertex in a directed graph G=(V,E) with positive edge weights. For this problem we present a decremental algorithm (that supports the deletion of a vertex, or weight increases on edges incident to a vertex). Our algorithm runs in amortized O(\vstar^2 \cdot \log n) time per update, where n=|V|, and \vstar bounds the number of edges that lie on shortest paths through any given vertex. Our APASP algorithm can be used for the decremental computation of betweenness centrality (BC), a graph parameter that is widely used in the analysis of large complex networks. No nontrivial decremental algorithm for either problem was known prior to our work. Our method is a generalization of the decremental algorithm of Demetrescu and Italiano [DI04] for unique shortest paths, and for graphs with \vstar =O(n), we match the bound in [DI04]. Thus for graphs with a constant number of shortest paths between any pair of vertices, our algorithm maintains APASP and BC scores in amortized time O(n^2 \log n) under decremental updates, regardless of the number of edges in the graph.Comment: An extended abstract of this paper will appear in Proc. ISAAC 201

    Fully-dynamic Approximation of Betweenness Centrality

    Full text link
    Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions. In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted undirected graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that could be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of such upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions. Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude

    How Good Are Popular Matchings?

    Get PDF
    In this paper, we consider the Hospital Residents problem (HR) and the Hospital Residents problem with Lower Quotas (HRLQ). In this model with two sided preferences, stability is a well accepted notion of optimality. However, in the presence of lower quotas, a stable and feasible matching need not exist. For the HRLQ problem, our goal therefore is to output a good feasible matching assuming that a feasible matching exists. Computing matchings with minimum number of blocking pairs (Min-BP) and minimum number of blocking residents (Min-BR) are known to be NP-Complete. The only approximation algorithms for these problems work under severe restrictions on the preference lists. We present an algorithm which circumvents this restriction and computes a popular matching in the HRLQ instance. We show that on data-sets generated using various generators, our algorithm performs very well in terms of blocking pairs and blocking residents. Yokoi [Yokoi, 2017] recently studied envy-free matchings for the HRLQ problem. We propose a simple modification to Yokoi\u27s algorithm to output a maximal envy-free matching. We observe that popular matchings outperform envy-free matchings on several parameters of practical importance, like size, number of blocking pairs, number of blocking residents. In the absence of lower quotas, that is, in the Hospital Residents (HR) problem, stable matchings are guaranteed to exist. Even in this case, we show that popularity is a practical alternative to stability. For instance, on synthetic data-sets generated using a particular model, as well as on real world data-sets, a popular matching is on an average 8-10% larger in size, matches more number of residents to their top-choice, and more residents prefer the popular matching as compared to a stable matching. Our comprehensive study reveals the practical appeal of popular matchings for the HR and HRLQ problems. To the best of our knowledge, this is the first study on the empirical evaluation of popular matchings in this setting

    Manipulation Strategies for the Rank Maximal Matching Problem

    Full text link
    We consider manipulation strategies for the rank-maximal matching problem. In the rank-maximal matching problem we are given a bipartite graph G=(AP,E)G = (A \cup P, E) such that AA denotes a set of applicants and PP a set of posts. Each applicant aAa \in A has a preference list over the set of his neighbours in GG, possibly involving ties. Preference lists are represented by ranks on the edges - an edge (a,p)(a,p) has rank ii, denoted as rank(a,p)=irank(a,p)=i, if post pp belongs to one of aa's ii-th choices. A rank-maximal matching is one in which the maximum number of applicants is matched to their rank one posts and subject to this condition, the maximum number of applicants is matched to their rank two posts, and so on. A rank-maximal matching can be computed in O(min(cn,n)m)O(\min(c \sqrt{n},n) m) time, where nn denotes the number of applicants, mm the number of edges and cc the maximum rank of an edge in an optimal solution. A central authority matches applicants to posts. It does so using one of the rank-maximal matchings. Since there may be more than one rank- maximal matching of GG, we assume that the central authority chooses any one of them randomly. Let a1a_1 be a manipulative applicant, who knows the preference lists of all the other applicants and wants to falsify his preference list so that he has a chance of getting better posts than if he were truthful. In the first problem addressed in this paper the manipulative applicant a1a_1 wants to ensure that he is never matched to any post worse than the most preferred among those of rank greater than one and obtainable when he is truthful. In the second problem the manipulator wants to construct such a preference list that the worst post he can become matched to by the central authority is best possible or in other words, a1a_1 wants to minimize the maximal rank of a post he can become matched to

    Popular Mixed Matchings

    Get PDF
    AbstractWe study the problem of matching applicants to jobs under one-sided preferences; that is, each applicant ranks a non-empty subset of jobs under an order of preference, possibly involving ties. A matching M is said to be more popular than T if the applicants that prefer M to T outnumber those that prefer T to M. A matching is said to be popular if there is no matching more popular than it. Equivalently, a matching M is popular if ϕ(M,T)≥ϕ(T,M) for all matchings T, where ϕ(X,Y) is the number of applicants that prefer X to Y.Previously studied solution concepts based on the popularity criterion are either not guaranteed to exist for every instance (e.g., popular matchings) or are NP-hard to compute (e.g., least unpopular matchings). This paper addresses this issue by considering mixed matchings. A mixed matching is simply a probability distribution over matchings in the input graph. The function ϕ that compares two matchings generalizes in a natural manner to mixed matchings by taking expectation. A mixed matching P is popular if ϕ(P,Q)≥ϕ(Q,P) for all mixed matchings Q.We show that popular mixed matchings always exist and we design polynomial time algorithms for finding them. Then we study their efficiency and give tight bounds on the price of anarchy and price of stability of the popular matching problem

    Popular Mixed Matchings

    No full text

    Blood lipid metabolites and meat lipid peroxidation responses of broiler chickens to dietary lecithinized palm oil

    Get PDF
    This trial was conducted to investigate the effects of supplementing saturated and unsaturated fat sources on serum metabolites and meat physiochemical parameters in the diets of broiler chickens. A total of 360 day-old male broiler chicks (Ross 308) were used in a completely randomized design with five treatments and six replicates of 14 chicks. The assay diets were developed by applying a ‎basal diet with no supplemented fat and the addition of soybean oil (SO), lecithinized palm oil (LPO), a 50 : 50 mix of SO and LPO (ESL), and 75 : 25 mix of SO and LPO (HSL) ratios to the basal diet. The inclusion levels of experimental fats were 2% and 4% in the starter and growing periods, respectively. Blood samples were collected from broilers to evaluate serum biochemical metabolites on day 41. Thigh meat samples were provided and analysed after 1, 5 and 10 days’ storage to evaluate lipid peroxidation at the end of the experiment. Fat and protein contents of thigh muscle and abdominal fat weight were measured and reported. Chickens fed LPO had greater serum triacylglycerol and very low density lipoprotein concentrations compared with those that received other dietary treatments (P <0.05). The fat content of the meat was higher in birds supplemented with SO, LPO and ESL than control (P <0.05). After 5 and 10 days of storage, the values of thiobarbituric acid reactive substance were lower in meat of broilers receiving LPO than SO and HSL (P <0.05). In conclusion, LPO decreased lipid peroxidation during different storage periods compared with SO.Keywords: Blood parameters, broilers, fat type, meat physiochemical parameter
    corecore